
www.manaraa.com

Rapid acquisition and model-based analysis of cell-free
transcription–translation reactions from
nonmodel bacteria
Simon J. Moorea,b,1, James T. MacDonalda,b,1, Sarah Wieneckec, Alka Ishwarbhaid,e, Argyro Tsipad,e, Rochelle Awa,f,
Nicolas Kylilisa,b, David J. Bellb,d, David W. McClymontb,d, Kirsten Jensena,b,d, Karen M. Polizzia,f, Rebekka Biedendieckc,
and Paul S. Freemonta,b,d,2

aCentre for Synthetic Biology and Innovation, Imperial College London, SW7 2AZ London, United Kingdom; bSection for Structural Biology, Department of
Medicine, Imperial College London, SW7 2AZ London, United Kingdom; cBraunschweig Integrated Centre of Systems Biology, Institute of Microbiology,
Technische Universität Braunschweig, 38106 Braunschweig, Germany; dLondon DNA Foundry, Imperial College London, SW7 2AZ London, United Kingdom;
eDepartment of Bioengineering, Imperial College London, SW7 2AZ London, United Kingdom; and fDepartment of Life Sciences, Imperial College London,
SW7 2AZ London, United Kingdom

Edited by James J. Collins, Massachusetts Institute of Technology, Boston, MA, and approved March 26, 2018 (received for review September 7, 2017)

Native cell-free transcription–translation systems offer a rapid route
to characterize the regulatory elements (promoters, transcription
factors) for gene expression from nonmodel microbial hosts, which
can be difficult to assess through traditional in vivo approaches.
One such host, Bacillus megaterium, is a giant Gram-positive bacte-
rium with potential biotechnology applications, although many of
its regulatory elements remain uncharacterized. Here, we have de-
veloped a rapid automated platform for measuring and modeling in
vitro cell-free reactions and have applied this to B. megaterium to
quantify a range of ribosome binding site variants and previously
uncharacterized endogenous constitutive and inducible promoters.
To provide quantitative models for cell-free systems, we have also
applied a Bayesian approach to infer ordinary differential equation
model parameters by simultaneously using time-course data from
multiple experimental conditions. Using this modeling framework,
we were able to infer previously unknown transcription factor
binding affinities and quantify the sharing of cell-free transcrip-
tion–translation resources (energy, ribosomes, RNA polymerases,
nucleotides, and amino acids) using a promoter competition exper-
iment. This allows insights into resource limiting-factors in batch
cell-free synthesis mode. Our combined automated and modeling
platform allows for the rapid acquisition and model-based analysis
of cell-free transcription–translation data from uncharacterized mi-
crobial cell hosts, as well as resource competition within cell-free
systems, which potentially can be applied to a range of cell-free
synthetic biology and biotechnology applications.

in vitro transcription–translation | cell-free synthetic biology | Bacillus |
modeling | automation

Cell-free transcription–translation systems use crude cell ex-
tracts (1–3) or purified components (4) to synthesize proteins

encoded by plasmid DNA or linear PCR products. Recently, a
renaissance in cell-free systems for synthetic biology has led to
applications, such as prototyping genetic pathway designs (5, 6),
medical viral biosensors (7), antibody production (8), and the
engineering of microfluidic biochip devices (9).
One underexplored area is the use of cell-free systems to study

native cellular machinery and gene-expression elements from diffi-
cult/intractable nonmodel microbial hosts; we conceptualize this
approach as native cell-free (NCF) transcription–translation, here-
after simply referred to as NCF. For example, organisms adapted
for growth in extreme environments that are able to produce valu-
able biomolecules at high yields from inexpensive substrates are of
particular interest for the future engineering of cell factories (10,
11). Other potential areas of interest include the use of nonmodel
organisms for novel antibiotic discovery (12, 13), while for health-
care applications there is great interest in developing new “living
therapies” for the engineering of the human microbiome, which is

comprised of thousands of microbial species, many of which remain
uncharacterized (14). Currently, many nonmodel microbial systems
are neither amenable to genetic manipulation nor fully characterized,
and the range of genetic parts (e.g., promoters, transcription factors)
can be limiting. Furthermore, strain engineering for bioproduction
can require long design cycles (Fig. 1A). In contrast, NCF provides a
rapid method to study gene expression using the endogenous com-
ponents for transcription, translation, and energy regeneration (6, 15,
16), while DNA parts, such as promoters, have shown high corre-
lation between in vivo and in vitro activity (17). In general, these
studies have largely focused on the use of well-characterized
Escherichia coli cell-free transcription–translation platforms
and there is little work on using nonstandard microbial hosts.
Bacillus megaterium is a giant Gram-positive bacterium with a

rich history in industrial biotechnology (18), which includes the
production of penicillin G amidase (19), β-amylases, and vitamin
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B12 (20, 21). B. megaterium is relatively uncharacterized due to a
low-efficiency protoplast transformation procedure that takes
3 days to complete (22). However, in comparison with the highly
characterized Bacillus subtillis, B. megaterium provides major ad-
vantages, such as stable plasmid maintenance (23), minimal neutral-
alkaline protease activity (24), and the ability to metabolize low-cost
substrates (25). Moreover, B. megaterium also offers a strong native
Sec-dependent secretion apparatus (22), which is a desirable fea-
ture for downstream processing, while for recombinant gene ex-
pression the xylose-inducible promoter system (26, 27) produces
recombinant proteins to the gram per liter scale (22), which is
comparable to genetically enhanced commercial E. coli strains, such
as the BL21 and Rosetta. A recent and bespoke application of its
use includes characterizing the vitamin B12 pathway (21, 28) along
with isolating soluble vitamin B12-dependent enzymes (29, 30).
Previous attempts to isolate these proteins from E. coli, resulted in
the production of inclusion bodies or inactive enzymes (21, 29, 30).
In this study, we demonstrate how readily a B. megaterium NCF

transcription–translation system can be established and used as a
platform to prototype gene-expression elements from this host.
We have also combined this cell-free system with factorial ex-
perimental design, acoustic liquid-handling robotics with nanolitre
controllability, and Bayesian model parameter inference methods
to demonstrate a rapid prototyping platform to enable the rigor-
ous characterization of gene-expression tools within hours, in
comparison with weeks for in vivo analyses (Fig. 1 A and B). A
significant advantage of cell-free systems is that the defined re-
action conditions permit the accurate characterization of genetic
parts and resource usage through mathematical modeling tech-
niques (6, 9, 15, 31). However, such approaches have previously
generally been applied to E. coli gene-expression circuits and none
have used Bayesian statistical inference methods. The ordinary
differential equations (ODE) models used in this work have a
large number of correlated but uncertain kinetic parameters with
complicated likelihood function surfaces. Bayesian methods are
ideally suited to tackling these types of difficult parameter in-
ference problems, where maximum-likelihood point estimates
could be misleading, by treating the model parameters themselves
as being random variables with defined probability density func-
tions. This provides a simple and consistent framework to quantify
how our knowledge of the model parameters has increased with

each experimental measurement (i.e., the probability density
functions become more narrowly distributed as we gain informa-
tion). Robustly parameterized genetic parts are a prerequisite of
computational genetic circuit design (32).
Here, we have applied a Bayesian parameter inference scheme to

model the obtained experimental data, aided by quantitative pro-
teomics, to rigorously infer unknown kinetic parameters describing
the cell-free reaction. We tested a selection of Sigma A (σA) con-
stitutive promoters from central energy pathways and also validated
a xylose-inducible promoter using an automated factorial experi-
mental design process (Fig. 1C), experimental set-up, data acqui-
sition, and analysis. As part of this work, we have also released a
general open-source C++ framework (ODE_MCMC_tools) for
Bayesian parameter inference for systems of ODEs. The develop-
ment of a B. megaterium NCF transcription–translation system
serves as an exemplar test case for rapidly prototyping novel genetic
regulatory elements from poorly characterized hosts, thus providing
a basis for the future engineering of this nonmodel organism. We
also suggest that this approach is expandable to a range of other
important microbial chassis currently being explored for synthetic
biology applications.

Results
Isolation of a Strong Constitutive Promoter and NCF Assay Optimization.
To initially test and optimize a NCF transcription–translation sys-
tem in B. megaterium, we first isolated and characterized a strong
constitutive σA promoter from B. megaterium. Previously, a strong
σA promoter was isolated from the pyruvate dehydrogenase (pdh)
operon in B. subtillis (33). For B. megaterium, we isolated the
equivalent promoter from the pdhABCD (bmd_1326-1329) gene
cluster by PCR along with the ribosome binding site (RBS) of pdhA
(bmd_1326), and used this to control the expression of gfp
(pRBBm258) or mCherry (pRBBm267). To initially validate the
performance of gene expression in vivo, the optimized xylose-
inducible promoter plasmid GFP variants (22) were used for
comparison and tested under plate-reader conditions. As expected,
the growth rate of the empty vector control and noninduced xylose
promoter recombinant strains was faster than the pdh or xylose-
promoter strains, with all strains reaching the stationary phase af-
ter ∼10 h of growth (SI Appendix, Figs. S3 and S4). A qualitative
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Fig. 1. Cell-free prototyping of a nonmodel microbe. (A) Testing of synthetic gene-expression plasmids in NCF using endogenous energy regeneration and
transcription–translation components. (B) Parallel transcription–translation measurements with the MGapt (mRNA) aptamer and GFP in B. megaterium NCF.
(C) A semiautomated workflow incorporating liquid-handling robotics for rapid screening of cell-free reactions (RXNs).
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assessment of GFP and mCherry production was also verified by
SDS/PAGE (SI Appendix, Fig. S1).
Next, to test constitutive and inducible promoter systems in

vitro, a B. megaterium cell-free extract was prepared using the
E. coli S30 protocol (34) with some optimization (SI Appendix,
Extended Materials and Methods and Figs. S5–S7). Importantly,
we have now found this protocol to be generally adaptable to a
selection of Gram-positive bacterial species, including B. mega-
terium (35, 36). Using this protocol, up to 4.96 μM of GFP was
synthesized within a 4-h batch reaction using the strong PDH
(pRBBm258) plasmid.

LC-MS/MS Quantitation of NCF Transcription–Translation Enzymes. To
initially parameterize the B. megaterium NCF extract, we next
quantified a selection of proteins from transcription–translation.
For E. coli cell-free, this is well-characterized (1, 37). However, for
nonmodel microbes, such as B. megaterium, this is generally not
the case. From E. coli studies, cell-free protein synthesis is re-
stricted by a combination of limiting factors, such as active 70S
ribosomes, RNA polymerase (RNAP) holoenzyme, energy, and
substrate resources, with NTP regeneration and inorganic phos-
phate accumulation thought to be major limiting factors under
batch-synthesis mode (2, 38). Transcription and translation pro-
cesses require ∼36 proteins and 70S ribosomes to undertake these
reactions (4). In this work, we selected key marker proteins for
quantitation including the ribosomal proteins (30S and 50S sub-
units), RNAP, and the σA factor, using targeted LC-MS/MS (SI
Appendix, Figs. S25–S27). We also measured the methionyl-tRNA
(Met-tRNA) and alanyl-tRNA (Ala-tRNA) synthetases because
they encode for both low- and high-frequency amino acids, re-
spectively (39). In comparison with E. coli measurements (1, 40),
the values we obtained were similar (SI Appendix, Fig. S25 and
Table S5). For example, the average 30S and 50S ribosome con-
tent (S4, S7, L2, and L4 ribosomal proteins) was determined at
2.18 ± 0.86 μM across three biological replicates in a standard
10 mg·mL−1 cell-extract reaction. For E. coli cell-free systems,
active ribosomes range from 1.6 to 2.3 μM (1, 40) under the same
cell-extract concentration (10 mg·mL−1). Our total protein quan-
titation is likely to provide an overestimate, since a fraction (∼20–
30%) of ribosomes are dissociated as 50S and 30S subunits (41).
In addition, we calculated the RNAP β-subunit at 0.41 ± 0.15 μM
and the σA factor at 53 ± 30 nM. The two aminoacyl tRNA
synthetases (methionyl- and alanyl-) we selected ranged from
0.13 to 0.22 μM.

Experimental Characterization of the Model Xylose-Inducible Promoter
System by Acoustic Liquid-Handling Robotics. Before characterizing
unknown gene-expression elements, we first investigated the
relatively well-characterized model xylose-repressor system na-
tive to B. megaterium. Here we analyzed its regulatory interac-
tions using liquid-handling robotic-assisted experiments and
model-based analyses with Bayesian parameter inference. We
inferred parameters using quantitative time-course data for both
mRNA levels (with the malachite green aptamer) and protein
levels (using the GFP fluorescent reporter), as well as incorpo-
rating the proteomic parameters obtained earlier by LC-MS/MS.
We then carried out two separate experiments with the xylose-
inducible promoter (described below) to obtain both quantitative
mRNA/protein data and xylose-repressor system behavior for
our modeling analyses.
The xylose-inducible promoter is derived from the native B.

megaterium xylABT operon, which encodes the xylose isomerase
(xylA), xylulokinase (xylB), and permease (xylT) genes (42, 43). To
characterize the kinetics of the xylose promoter, we used our cell-
free system to simultaneously monitor transcription and trans-
lation in vitro. To monitor mRNA expression, we modified the 3′
UTR of the xylose-inducible promoter plasmid (pKMMBm5) to
provide real-time fluorescent measurement of mRNA synthesis as

previously described (5, 16) (SI Appendix, Figs. S11–S16). First,
using an in vitro-synthesized GFP-MGapt transcript, we measured
the fluorescence for this aptamer in a B. megaterium cell-free re-
action for 2 h to generate a calibration curve and observed that
mRNA degradation followed a single-phase exponential decay
rate (SI Appendix, Figs. S13 and S14). The half-life for this tran-
script was estimated at 15.6 min, which is similar (18 min) to
previously observed E. coli cell-free measurements (6). In a par-
allel time-course measurement, qRT-PCR confirmed that actual
mRNA levels correlated well with real-time fluorescence mea-
surement (SI Appendix, Fig. S15).
We next tested a range of DNA concentrations in cell-free

reactions with simultaneous measurement of MGapt and GFP
fluorescence (Fig. 2). With an increasing DNA concentration of
pKMMBm5-MGapt, the rate of MGapt fluorescence rose rapidly
to a peak concentration of ∼235 nM of GFP-MGapt transcript at
25–27 min after the start of incubation (Fig. 2). Thereafter, the
signal decays suggesting that NTP levels become limiting for fur-
ther mRNA synthesis. In fact, spiking the reaction with a purified
GFP-MGapt transcript, shows that mRNA concentrations decay
more slowly throughout the assay when expressed from plasmid
DNA, suggesting that continuous transcription provides mRNA
substrate for translation throughout the reaction time period (SI
Appendix, Fig. S16). Additionally, we also independently verified
that the extracts displayed undetectable interference from native
XylR (SI Appendix, SI Text and Fig. S28).
A second, larger-scale experiment was carried out to separately

characterize the XylR promoter in cell-free reactions. This ex-
periment was designed to simultaneously monitor GFP translation
in 108 unique conditions in triplicate (324 total reactions) made
up of an augmented full factorial combination of different con-
centrations of purified recombinant XylR repressor protein (0–
1,000 nM) (SI Appendix, Figs. S18–S22), D-xylose (0–1,000 μM),
and pKMMBm5-MGapt DNA template (1, 2, and 5 nM) in a 384-
well microtiter plate using an acoustic liquid-handling robot to
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Fig. 2. Transcription and translation of the xylose-inducible promoter. Cell-
free extracts (10 mg·mL−1) were incubated at 30 °C for 6 h with a range of
DNA concentrations (1–10 nM) of the pKMMBm5-MGapt plasmid. Fluores-
cence data were collected every 60 s for (A) GFP (protein) and (B) MGapt
(mRNA) signals and displayed as black points in the plot with gray bars
representing SE. Experimental data were modeled using ordinary differen-
tial equations with a system of 14 species and 26 parameters (SBML model
available in the GitHub software repository, see Methods), and parameters
were inferred using MCMC (SI Appendix, Fig. S18 and Table S9). Simulated
trajectories using these inferred parameters are shown with green (for GFP)
and red (mRNA) lines.
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provide nanolitre control of liquid transfers (Fig. 1C). Factorial
experimental design and transfer instructions for the robot were
automatically generated using a Python script (available in the
GitHub repository, see Methods). In summary, when XylRHis is ti-
trated in the absence of D-xylose, a repression effect on GFP ex-
pression is observed, as expected (Fig. 3A). Following the titration
of D-xylose in the presence of 0.1–1.0 μMXylRHis, GFP synthesis is
recovered, which is consistent with the release of the XylRHis re-
pressor from the promoter region upon binding of D-xylose.

Mathematical Modeling of the Xylose-Repressor System. To date, the
binding affinities and Hill coefficients of the XylR repressor protein
to DNA and the inducer (xylose) to the repressor protein haven’t
been experimentally determined. To estimate these and other un-
known parameters, we modeled the system using a coarse-grained
system of ODEs describing cell-free transcription–translation (Methods
and SI Appendix), with 18 chemical reactions, 14 species, and 26
parameters (SI Appendix, Table S9). For the xylose-inducible pro-
moter, the initial concentration of free DNA was approximated

using the Hill equation. The mRNA degradation reaction was as-
sumed to be a first-order reaction. The translation reaction
produced nonfluorescent immature GFP and this was assumed
to mature in a first-order reaction into the detectable fluorescent
species, GFPmat.
Initial concentrations for all species other than NTP, the sec-

ondary energy source, ribosome, and RNAP were set to zero. The
LC-MS/MS determined concentrations for RNAP:σA holoenzyme
and the ribosome 70S complex were incorporated as upper bounds
for initial values during parameter inference (0.08 and 2.5 μM,
respectively). Although initial NTP concentrations in the reaction
are known, the overall NTP capacity of the system was unknown as
the efficiency of NTP regeneration from the secondary energy
source was unknown. For this reason, the initial concentrations of
NTP and the secondary energy source were inferred. In all exper-
imental conditions, the mature GFP concentration was measured
during the course of the reaction. However, where the mRNA
concentrations were also experimentally determined, this was also
included in the log-likelihood function.

Fig. 3. Cell-free quantitative characterization of the xylose-inducible promoter system. D-xylose (mM), purified XylRHis (μM), and pKMMBm5 plasmid DNA
(nM) was titrated into a cell-free reaction using an acoustic liquid-handling robot with full factorial experimental design and transfer instructions auto-
matically generated using a Python script (SI Appendix, SI Text), giving a total of 108 unique conditions in triplicate (324 reactions). The full experimental
time-course data (SI Appendix, Figs. S19–S21) from the xylose experiment were simultaneously used to infer ODE model parameters (SI Appendix, Fig. S22 and
Table S9), but for simplicity only end-point values are shown in this figure. (A) Experimentally measured end-point GFP concentrations are shown as black
points, the green surface contour map represents simulated end-point GFP values as a function of XylRHis and xylose concentrations. Differences between the
experimental values and the simulated values are displayed as vertical black lines. (B) The inferred univariate and bivariate marginal posterior distributions
(the diagonal and off-diagonal plots, respectively) over the KD and Hill-coefficients for binding of XylR and xylose (see SI Appendix, Fig. S22 for the full
posterior over all model parameters). The posterior distribution is the inferred probability density function of the model parameters given the experimental
data. The points were sampled from the posterior using MCMC and are colored by local point density.
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Model parameters were first inferred from the DNA titration
dataset from both GFP and mRNA time-course observations
using our ODE_MCMC_tools software (Methods). The posterior
distribution from the first experiment (SI Appendix, Fig. S18 and
Table S9) was then used as a prior distribution for parameter
inference on the full factorial dataset. Multiple Markov chain
Monte Carlo (MCMC) runs were generated from different pa-
rameter set starting points and convergence was confirmed for
all parameters using the Gelman–Rubin diagnostic (44). Simu-
lated trajectories from the model closely matched the experi-
mental time-course data for both GFP and mRNA concentration
at different DNA template concentrations (Fig. 2), while the
posterior distribution was found to be unimodal (SI Appendix,
Fig. S18). The translational machinery appeared to be saturated
at around 5-nM template DNA with no further increase in total
protein produced; however, mRNA expression continued in-
creasing with higher DNA concentrations. This implied that the
ribosomes were saturated with mRNAs but the host RNAPs
were not saturated with DNA template.
Over the diverse range of conditions in the full factorial XylR/

xylose experiment, both the simulated end-point GFP concen-
trations (Fig. 3A) and the time-course trajectories were found to
fit the experimental data remarkably well (SI Appendix, Figs. S19–
S21). The posterior distribution for these experiments was also
found to be unimodal and confidence intervals were determined
(Fig. 3B and SI Appendix, Fig. S22 and Table S9). The maximal
translation rate was inferred to be 5.4–6.3 amino acids min−1

(95% confidence intervals), which is lower than previously esti-
mated values for E. coli cell-free reactions (45), while the maximal
transcription rate was inferred at between 488 and 688 bp min−1,
similar to previously estimated values for E. coli cell-free (300–
600 bp min−1) (1). Previously, the maturation rate of GFP+ (a
synonym for GFPuv3) was measured to be 0.066 min−1 (46). Here,
we inferred the maturation rate to be between 0.058 and
0.063 min−1 without taking into account any prior knowledge. The
difference may reflect experimental inaccuracies, simplicities in
the model, or indicate that a lower oxygen concentration was
limiting maturation in the reaction mixture. Moreover, the XylR
repressor was found to cooperatively bind to its operator sequence
(dissociation constant 12.9–14.2 nM and Hill coefficient 1.74–1.8),
while xylose appeared to cooperatively bind XylR (dissociation
constant 12.2–13.5 μM and Hill coefficient 1.44–1.49). In sum-
mary, our modeling approach provides a detailed kinetic analyses
of the XylR promoter and repressor without any prior knowledge,
illustrating the potential of integrating Bayesian inference mod-
eling into NCF part characterization.

Resource Competition and Energy Usage in Our NCF System.We next
wanted to identify the strengths and limitations within our new
NCF system by focusing on RNAP/ribosome availability and
energy consumption. We anticipated that by providing a rigorous
characterization of our NCF system, we would be able to prop-
erly assess the limits of quantifying new DNA parts in B. mega-
terium NCF extracts. To achieve this, we designed a competition
experiment described below.
To gain insight into the sharing of resources in our NCF sys-

tem, we investigated the simultaneous expression of two differ-
ent proteins, both under the control of a strong constitutive
promoter, inspired by previous studies (47). Our plasmid con-
structs allowed the simultaneous real-time measurement of GFP,
RFP, and the GFP mRNA transcript concentrations. The two
plasmids were then titrated together into cell-free reactions at
different plasmid concentrations (from 0 to 40 nM) (Fig. 4). It
was found to be difficult to avoid leakage from the mCherry
fluorescence signal into the MGapt signal (SI Appendix, Fig.
S30); however, a peak for the mRNA signal was observed at
around 50 min, before significant mature mCherry was detected
around 90 min. In reactions where no mCherry plasmid was

present, the full mRNA time-course signal was used in param-
eter inference. Where the mCherry plasmid was present, the
mRNA MGapt data up to 90 min was used.
As in the previous XylR experiment, our ODE_MCMC_tools

software was used to infer model parameters. Based on the re-
action scheme described in Methods, a new ODE model was
created to account for the simultaneous expression of two proteins
from two different promoters in the same reaction. This model
included accounting for the use of shared resources (NTPs, amino
acids, RNAP, and ribosomes) and resulted in a model with
31 parameters and 29 species. The LC-MS/MS determined con-
centrations for the RNAP:σA holoenzyme and the ribosome 70S
complex were incorporated as upper bounds for initial values
during parameter inference (0.08 and 2.5 μM, respectively).
Model parameters were inferred simultaneously from the full
time-course datasets using MCMC. The two-promoter model with
full resource accounting, was able to simultaneously fit the
36 different experimental conditions with time-course data for
mature GFP, mature mCherry, and GFP mRNA species (Fig. 4
and SI Appendix, Fig. S30). The maturation kinetics of mCherry
are not as well understood as GFP, and the fluorescence curves
can be seen to have a significantly longer lag-time. For this reason,
mCherry maturation was modeled to have a three-step maturation
process similar to its progenitor, dsRed (48). The mCherry mRNA
species were unobserved and were assumed to have the same

Fig. 4. Competition for cell-free shared resources. GFP (pdh-RiboJ-RBS-GFP-
MGapt-Bba_B0015) and mCherry (pdh-RiboJ-RBS-mCherry-Bba_B0015) encod-
ing plasmid DNAwere simultaneously titrated into cell-free reactions at a range
of concentrations from 0 to 40 nM. The light green points (with light green
error bars indicating SEs) represent the experimentally measured GFP concen-
trations, while the dark green lines represent the simulated trajectories. The
light red points (with light red error bars indicating SE) represent the experi-
mentally measured mCherry concentrations, while the dark red lines represent
the simulated trajectories. In reactions where no mCherry plasmid was present,
the full mRNA time course signal was used in parameter inference. Where the
mCherry plasmid was present, the mRNA MGapt data up to 90 min was used.
The system was modeled using an ODE model with 29 species and 31 parame-
ters (an SBML model is available in the GitHub software repository, see Meth-
ods). Model parameters were simultaneously inferred from all experimental
data points (GFP mRNA time-course data are shown in SI Appendix, Fig. S30)
using MCMC (SI Appendix, Fig. S29 and Table S10).

E4344 | www.pnas.org/cgi/doi/10.1073/pnas.1715806115 Moore et al.

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
15

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1715806115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1715806115


www.manaraa.com

degradation rate as the GFP mRNA species. Transcription elon-
gation rate was assumed to be the same for both transcripts, but
other parameters related to transcription and translation were not
assumed to be identical. Nevertheless, as would be expected given
that the same RiboJ-insulated pdh promoter was used to express
both proteins, transcriptional parameters (promoter escape rate
and promoter binding constant) were inferred to fall within similar
ranges (SI Appendix, Table S10).
The effect of competition for both transcription and trans-

lational resources can be seen experimentally. Where both pro-
moters were competing for RNAPs, the levels of GFP mRNA
decreased, implying that the transcriptional machinery is fully
saturated (SI Appendix, Fig. S30). Taking the most transcrip-
tionally burdened condition (40 nM pdh-RiboJ-GFP-MGapt and
40 nM pdh-RiboJ-mCherry plasmid concentrations), we find that
our model predicts that increasing the transcription elongation rate
and increasing the RNAP concentration can increase the total
amount of translated amino acids, suggesting there is some spare
translational capacity in this condition and that, in some circum-
stances, the transcriptional capacity of the system can be the limiting
factor (SI Appendix, Fig. S32).
Parameters related to protein translation were found to vary a

lot more widely, with an order-of-magnitude difference in trans-
lation elongation rate and almost two orders-of-magnitude dif-
ference in the RBS binding constant (SI Appendix, Table S10).
The maximal final level of mCherry synthesis was ∼0.4 μM for a
Bacillus codon-optimized variant (low G + C%), with a high G +
C% variant providing up to 0.09 μM of mCherry for comparison
(SI Appendix, Fig. S7). In vivo synthesis of mCherry was also
comparatively lower than GFP (SI Appendix, Fig. S1). This sug-
gests that mCherry translation elongation is rate-limiting and
therefore creating more burden to the translational machinery. To
investigate this further, 500 random parameter sets were drawn
from the posterior distribution and simulated free-ribosome con-
centration trajectories were plotted as a function of the 36 differ-
ent experimental conditions (SI Appendix, Fig. S33). In all
experimental conditions, the model predicts a minimum in the
concentration of free ribosomes at around 50 min into the reaction
after an initial lag-phase where mRNAs are increasing in con-
centration and while there is still a high NTP concentration
available for translation. It can be seen that the pdh-RiboJ-
mCherry plasmid exerts a greater burden on the ribosomes, even
though total protein expression from this plasmid is much lower
than for the pdh-RiboJ-GFP-MGapt plasmid. Our model suggests
that this is due to the longer ribosome residency time on the
mCherry mRNA during the elongation process, predicting a much
higher mean number of ribosomes per polysome for the mCherry
mRNA than for the GFP mRNA (SI Appendix, Figs. S34 and S35).
We also find that only around 6–7% of the total theoretical energy
input was accessible to the system, with only 0.6–0.7% of the
theoretical energy input directed to protein translation. A detailed
analysis of the energy usage can be found in SI Appendix, SI Text,
Fig. S36, and Table S10. In summary, our detailed characterization
illustrates how important a full kinetic understanding of a partic-
ular NCF system and reporter protein is for robust measurements
of new parts in a high-throughput context.

Characterization of B. megaterium Promoter Parts in Vitro and in
Vivo. After testing the transcriptional, translational, and energy
resource limitations of the B. megaterium NCF system, we next
sought to use our platform to identify new DNA parts for syn-
thetic biology applications. The primary advantage of developing
a NCF platform in a nonmodel host is to characterize new gene-
expression elements using the endogenous polymerase and σ
factors from the native host. Additionally, we also measured the
promoter activities in vivo. Previously, we have demonstrated
that E. coli promoter activity correlates between in vivo and in
cell-free–based measurement (17).

To provide a proof-of-concept as to whether this trend is re-
producible in another cell-free host, a small selection of unchar-
acterized B. megaterium glycolysis and gluconeogenesis promoters
were chosen for promoter testing (SI Appendix, SI Text). Unlike
some better-characterized microbes, no prior proteomic or RNAseq
information was available to guide this selection process. How-
ever, we selected a set of promoters from central metabolism,
which share some partial conservation to the −10 and −35 consensus
(SI Appendix, SI Text) sequence (−35TTGACA and −10TATAAT).
This represents a characteristic recognition motif for transcription
initiation by the σA protein, the major growth regulatory factor of
Bacillus species (49). This indicated that the B. megaterium pro-
moters are putative σA promoters. In addition, the pdh promoter
used in the competition experiments, was used as a positive control
for a strong σA constitutive promoter.
To test these promoters under the same context, the well-

characterized RiboJ insulator (50) was introduced and assembled
by EcoFlex (51) with an RBS (derived from pKMMBm5), GFP,
MGapt, Bba_B0015 terminator, and Bacillus shuttle vector
backbone (tetA-rebB). For cell-free, the strongest levels of mRNA
and GFP were produced with the pdh and fba promoters (SI
Appendix, Figs. S8, S9, and S37), with pdh achieving a maximum
GFP yield of 3.40 μM with 20 nM of plasmid DNA (Fig. 5 A and
B). The other promoters, gap, fbp, pgi, and pgk, displayed medium
strength activities with an end-point range of 0.20–0.61 μM GFP
synthesized. The pgc promoter produced the weakest end-point
yield of 0.08 μM GFP, while the activities of the pyk and tpi
promoters were not detectable. These observations were also
proportional to the mRNA signal (SI Appendix, Figs. S8 and S9).
However, while pdh and fba demonstrated similar levels of GFP
expression, pdh showed stronger mRNA expression (Fig. 5A and
SI Appendix, Fig. S8), suggesting that cell-free translation is sat-
urated with the strongest promoter, pdh.
In comparison, in vivo promoter activities displayed a similar

trend to the cell-free data (Fig. 5B). The promoters fbp, gap, pgc,
pgi, and pgk were found to be relatively low strength (Fig. 5 and
SI Appendix, Figs. S8 and S9), while pyk and tpi were below the
limit of detection (see SI Appendix, SI Text for further discus-
sion). Overall, the expression levels of the tested promoters (pdh,
fba, fbp, gap, pgc, pgi, and pgk) showed a statistically significant
correlation coefficient of 0.916 (P = 0.0001) (SI Appendix, Fig.
S10), providing a further proof-of-concept of a relationship be-
tween in vivo and cell-free measured promoter activities in
a prokaryotic system.

Semiautomated Screening of a Synthetic RBS Library. To demon-
strate robustness and scalability of our NCF system, we developed
a semiautomated workflow for screening libraries of biological
parts using an acoustic liquid-handling robot (Fig. 6A). For E. coli
and B. subtilis, the RBS is well-characterized, unlike B. mega-
terium, where only a handful have been tested for recombinant
protein expression, providing an ideal test case for our platform
(18). The RBS is composed of a semiconserved polypurine motif
(5′-AGGAGGA-3′) Shine–Dalgarno sequence, followed typically
by an A/T-rich spacer of 2–10 nucleotides. In addition, a spacer
range of 5–10 nucleotides for E. coli and B. subtilis was previously
determined as being optimal for translation initiation (52).
To generate a synthetic RBS library, a degenerate poly-R (A/G)

Shine–Dalgarno sequence and poly-W (A/T) spacer varying from
3 to 8 nucleotides was designed and combined with the strong
PDH promoter described earlier in this paper. Libraries with
varying spacer sequence lengths (3–8 bases, termed RBS-3, -4, -5,
-6, -7, and -8) were generated using PCR and individually screened
in NCF. The upper library sizes for the RBS-3 and RBS-8 libraries
were 1,024 (210) and 32,768 (215) combinations, respectively. These
libraries were transformed into E. coli and 44 colonies were
randomly sampled from each RBS spacer variant library category
(n = 264) and isolated using 96-well DNA purification. The library
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was screened in two stages, with an initial screen to find active hits,
followed by a more detailed analysis of selected variants.
To minimize reagent usage and reduce automated assay set-up

time, we scaled down our cell-free reactions to 2-μL reaction
volumes using 0.5 μL of DNA and 1.5 μL of NCF mix. This gave
a mean final DNA concentration of 7.5 ± 1.8 nM within the NCF
reaction with a range of 1.4–11.0 nM from the preliminary DNA
screened (SI Appendix, Fig. S38). DNA concentrations were not
normalized in this initial screen, as we were only concerned with
selecting active variants at this stage. This reaction scale gave
typical z-factor scores of between 0.517 and 0.744 with the pos-
itive control plasmid (PDH-GFP) versus a buffer negative con-
trol, indicating a sufficient statistical effect size for this screening
assay. For comparison, a 10-μL volume reaction gave a stronger
z-factor score of 0.90, although this was offset by increased
transfer time (30 min) and reagent cost (2,880 μL NCF mix) for a
384-well plate. In contrast, despite increased variability at a 2-μL
scale, this has the advantage of rapid transfer (10 min), minimal
reagent cost (576 μL NCF mix), and low dead volume (200 μL
for a six-well source plate). At the 2-μL reaction scale, ∼1 L of
cell culture (∼6 mL cell-extract) provides enough NCF mix
(∼18 mL) for 12,000 reactions, enabling scalable cell-free–based
screening assays. Moreover, to account for transfer delay dif-
ferences using the acoustic liquid-handling robot and positional
effects, four technical repeats for each RBS variant and controls
were randomly distributed in the plate.
Aside from the RBS-3 library, which displayed minimal hits,

all libraries provided a range of positive hits, which is consistent
with previous E. coli and B. subtilis RBS studies (52, 53). Fifteen
variants above the limit of detection (Fig. 6B) from each of the
RBS-4, -5, -7, and -8 libraries, along with 30 from the RBS-6 li-
brary, were selected for sequencing and more detailed analysis.

After elimination of duplication events (four in RBS-6 group and
two in RBS-4 to -7), each RBS variant was characterized in our
NCF system with normalized DNA concentrations of 10 nM as
four technical repeats and is presented as a ranked RBS activity
library in SI Appendix, Fig. S39 and Tables S12 and S13.
Focusing on the RBS-6 library, additional in vivo and in silico

data provided a comparison of methods. Here 26 RBS-6 variants
were transformed and relative RBS activity was determined as a
steady-state measurement with cell-free, in vivo, and through in
silico prediction, using the RBS Calculator (54) and UTR Designer
(55) models. Interestingly, two variants (pSJM1211 - 5′-GAGGA-
GGTATTAT-3′ and pSJM1223 - 5′-AAGGGGGTATTAT-3′)
identified from the cell-free screen displayed a twofold enhanced
activity in vivo in comparison with the positive control RBS (5′-
AGGAGGTGAATGTCAT-3′). This was also consistent with in
silico predictions (SI Appendix, Tables S12 and S13). Statistically
significant (P < 0.001) correlations were found between cell-free,
in vivo, and in silico datasets (Fig. 6C).
Importantly, the strongest correlation was found to be be-

tween cell-free and in vivo cell data (r = 0.87, P < 0.001). This
not only provides further support to the earlier proof-of-concept
findings with the natural B. megaterium promoters, but also
complements in silico prediction methods and demonstrates the
speed and precision of using liquid-handling robotics in a semi-
automated cell-free screening workflow.

Discussion
E. coli-based cell-free platforms have become an established
cornerstone of cell-free synthetic biology for prototyping gene
expression (6, 15, 16) and optimizing metabolic pathway designs
(1, 5, 56). Led by the early developments of Swartz and col-
leagues (57), cell-free has demonstrated the potential for scal-
able industrial protein manufacturing to provide an alternative
and controlled environment for engineering valuable biomole-
cules outside of the living cell (58). However, in depth studies of
cell-free systems have generally focused on the well-characterized
synthetic biology chassis, such as E. coli. To address this short-
coming, we have developed the concept of NCF. Prerequisites for
a minimum NCF proof-of-concept study include the ability to
harvest a sufficient concentration of active cell-extracts (∼15–
30 mg·mL−1), which can be limiting for slow-growing bacteria, and
an initial handful of gene-expression tools. If energy regeneration,
transcription, or translation present a bottleneck, this can be al-
leviated by the addition of purified components, such as creatine
kinase, T7 polymerase, or 70S ribosomes, respectively. We have
found the 3-PGA S30 energy mix (34) to be active in a selection of
Gram-positive bacteria species (35, 36), including B. megaterium.
This energy mix may be found to be more generally active in new
NCF systems in the future. In this paper, we have extended this
work to establish an integrated NCF platform that uses acoustic
liquid-handling robotics (nanolitre transfers) combined with a
Bayesian model parameter inference approach, providing a quan-
titative model-based parameterization of cell-free transcription–
translation dynamics. We also further apply a semiautomated
workflow for characterizing new library parts and show that re-
action volume can be scaled down to minimize reagent usage at
scale, while still permitting the acquisition of precise and statis-
tically significant data. We believe this is particularly useful for
cell-free screening applications where reagent cost or availability
(e.g., mammalian cell-free) is a limiting factor for automation.
Our choice of B. megaterium is in part due to the important use

of industrial microbes for the production of valuable biomolecules,
ranging from vitamins (20), amino acids (59), and commodity fine
chemicals (60). B. megaterium has industrial potential for the
overproduction of proteins but suffers from a lack of genetic tools,
poor genetic tractability, and an uncharacterized metabolome (18).
Indeed many industrial microbial hosts have been established
through strain evolution using random mutagenesis coupled with
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screening to optimize growth rates, improve resistance to toxic
metabolites, and elevate product titers of a chosen biomolecule
(20). Given the plethora of microbial species that have not been
characterized, there is a need to develop new approaches that
would enable such microbial systems to be explored rapidly for
biotechnology applications, including and beyond bioprocessing.
One such application is in the engineering of the human gut
microbiome, which comprises thousands of poorly characterized
bacterial species (14). For such an application, there is a need for
novel bacterial strains to colonize and persist in the human gut for
extended periods of time and such strains need to be genetically
engineered to perform specific tasks, like sensing and memory (61).
Using our NCF platform we were able to characterize and

model the native B. megaterium xylose-inducible promoter sys-
tem, as well as a selection of B. megaterium σA constitutive pro-
moters and RBS library members, which significantly expands the
available toolset for this organism. Our NCF platform uses en-
dogenous RNAP, translational apparatus, and energy regeneration
enzymes for coupled protein synthesis and does not require the
addition of exogenous components, such as T7 RNAP or enzymes
for ATP synthesis (e.g., pyruvate kinase, creatine kinase) and thus
provides, in part, a native environment for measurement of en-

dogenous components. Cell-free systems also have the general
advantages of permitting direct access to the reaction and pro-
viding a simple fluorescent read-out of complex assays. Here, we
have used these properties to rapidly infer previously unknown
XylR transcription factor binding affinities, which would be diffi-
cult or impossible to access using live-cell experiments. Other
inferred model parameters, such as GFP maturation rates and
transcription elongation rates, were found to closely match pre-
viously known values (SI Appendix, Tables S9 and S10).
For B. megaterium we found that in vivo RBS and promoter ac-

tivities show strong correlation with cell-free activity, providing fur-
ther evidence to our and other earlier findings for E. coli cell-free
(17, 62). However, cell-free does present certain limitations. For
example, cell-free is unable to fully capture biological perturbations
resulting from growth-associated stress (63, 64). In addition, while
two new strong RBS variants were identified in vivo, these displayed
similar activity to the standard RBS (pRBBm258) in cell-free.
From our prior resource competition and modeling experi-
ments, we suggest that in cell-free, ribosomes are rate-limiting,
therefore presenting a bottleneck for identifying stronger RBS or
promoter elements. Therefore, while NCF provides a fast tool to
initially test uncharacterized gene-expression elements from
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nonmodel organisms, secondary verification in the in vivo plat-
form will also further inform this design process. We anticipate
that NCF can open up the possibility of designing in vivo genetic
circuits for less well-characterized organisms.
While the quantitative parameterization of individual genetic

elements in vitro is important, their behavior in living cells is cou-
pled to other genetic elements by the use of shared resources, such
as free ribosomes. A combination of robustly parameterized genetic
components, together with models capable of accounting for re-
source competition, could help address the particularly challenging
problem of complex dynamical circuit design (65, 66). To analyze
how such resources are utilized in cell-free reactions under condi-
tions that potentially mimic cellular stress, we have used multi-
plexed absolute MS quantification of transcription–translation
components together with cell-free reactions with multiple pro-
moters. By titrating varying quantities of two competing promoters
into our cell-free reactions, we were able to estimate resource
sharing using mathematical modeling with Bayesian parameter in-
ference (Fig. 4 and SI Appendix, Figs. S29–S36). Interestingly, for
two different genes (one expressing GFP and one mCherry), we
observed strikingly different propensities to exert translational
burden on the system. The mCherry mRNA was inferred to have a
much slower translation elongation rate, depleting the concentra-
tion of free ribosomes at much lower promoter concentrations than
the corresponding GFP-expressing promoter (SI Appendix, Fig.
S33). The reasons for this are unclear, but it could be due to the
codon usage being suboptimal or it could be an intrinsic property of
the mCherry protein sequence itself.
In comparison with a fully optimized E. coli cell-free reaction

(38), our initial B. megaterium system is approximately one order-
of-magnitude less active, even though the protein synthesis ca-
pacity of wild-type B. megaterium in vivo is comparable (gram per
liter scale) to commercial E. coli strains (22). From the LC-MS
analysis, this confirmed that the level of core transcription–
translation components is comparable to previous summarized
E. coli cell-free literature and therefore is unlikely to be rate-limiting
(1). Taking into account the combined experimental and modeling
analysis, we suggest that a number of factors are currently rate-
limiting for our B. megaterium cell-free transcription–translation
system. These include inefficient NTP regeneration, energy
wastage, suboptimal codon usage, and ribosome elongation rates.
Surprisingly our model, with parameters inferred from the two-
promoter resource competition experiment, suggests that only
∼6% of the total theoretical energy input into the system is ac-
cessible in practice. Our model predicts that improving the me-
tabolism of the secondary energy source would increase the
available energy and, therefore, substantially increase the overall
protein yield (SI Appendix, SI Text). We find that of the total
accessible energy, a large fraction (>74%) is typically diverted to
competing nonspecific phosphorylase activity as previously dis-
cussed (67). In the future, we will look to improve energy re-
generation in B. megaterium NCF to assess its potential use for
scaled-up recombinant protein production processes in vitro.
In summary, we have established an integrated experimental

platform that combines automation, factorial experimental design,
and modeling to study NCF extracts from different organisms (35,
36). Our approach opens up the possibility of systematically ex-
ploring gene-expression tools, cell-free transcription–translation,
and energy regeneration machinery from understudied host cells
for new synthetic biology and biotechnology applications.

Methods
Strains and Plasmids. B. megaterium wild-type strain DSM319 was used for
preparing the cell-free extract (68), E. coli strain BL21 (DE3) Star-pLysS
(LifeTechnologies) for the recombinant production of the His6-tagged B.
megaterium DSM319 repressor protein XylR (SI Appendix, SI Text), and E. coli
strain DH10B (Invitrogen) for routine cloning. All of the plasmids and oligos
used in this study are listed in SI Appendix, Tables S1–S4, respectively. For
construction of plasmids, please see SI Appendix, SI Text.

Growth and Recombinant Protein Production in B. megaterium. We used a
fluorescence variant (GFP+-F64L/S65T/Q80R/F99S/M153T/V163A) of the wild-
type GFP, herein simply referred to as GFP, to monitor protein production in
B. megaterium cell-free transcription–translation, along with mCherry pro-
tein. B. megaterium cells were individually transformed with the corre-
sponding plasmids and cultivated as described previously (22).

B. megaterium Cell-Extract Preparation and Transcription–Translation Reaction
Conditions. A B. megaterium DSM319 cell-free transcription–translation sys-
tem was developed based on the E. colimethod of Sun et al. (34). Full details
and modifications are outlined in SI Appendix, SI Text and Table S6. This
method yielded between 27–34 mg·mL−1 of cell-free crude lysate. All cell-
free transcription–translation experiments were repeated with at least two
biological repeats and three repeat measurements. Calibration standards of
purified GFP-MGapt mRNA, His6-tagged GFP and mCherry were prepared in
the standard reaction mixture (SI Appendix, Figs. S2 and S14).

Acoustic Liquid-Handling Robotics and Experimental Set-Up. Full factorial ex-
perimental design and Echo525 liquid handler (Labcyte) pick list transfer
instructions were automatically generated using a Python script (available at
https://github.com/jmacdona/ODE_MCMC_tools) or Labcyte PickList soft-
ware. Liquid droplets were transferred as multiples of 25 nL to a final vol-
ume of 10 μL as three triplicate replicates. Plates were sealed with Breathe-
Easy sealing membrane (Sigma) for 10-μL reactions and a sealed aluminum
foil for 2-μL reactions, and briefly centrifuged at 1,000 × g for 10 s. A
CLARIOStar plate reader (BMG Labtech) was used for cell-free incubations
and fluorescence measurements. Standard measurements were recorded
every 10 min for 40 cycles at 30 °C with 10 s of 250 rpm orbital shaking
before measurement. Further details and fluorescence settings are provided
in SI Appendix, SI Text. For details of XylR experiments, please see SI Ap-
pendix, SI Text and Fig. S17.

Multiplexed Protein Quantification by LC-MS/MS. A proteomics LC-MS/MS
protocol based on previous studies was developed to quantitate cell-free
transcription–translation enzymes from a triplicate biological replicates of
B. megaterium cell extracts. Full information is provided in SI Appendix, SI
Text, Figs. S23–S26, and Tables S7, S8, and S11.

Mathematical Modeling of Cell-Free Transcription–Translation. A general ODE
model scheme was created to account for the expression of single or multiple
genes in the same reaction. This model included accounting for the use of
shared resources (NTPs, amino acids, RNAP, and ribosomes). Further details
are provided in SI Appendix, SI Text. SBML models are available from Github,
as linked below.

Bayesian Parameter Inference.A general C++ framework, called ODE_MCMC_tools,
for inferring model parameters and initial values from experimental datasets
for systems of ODEs using adaptive MCMC and multithreaded parallel tem-
pering MCMC (PT-MCMC) was developed. Further details are in SI Appendix, SI
Text. Source code and precompiled binaries are available from https://github.
com/jmacdona/ODE_MCMC_tools.
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